3.2.16 \(\int \frac {x^3 (a+b \text {sech}^{-1}(c x))}{(d+e x^2)^2} \, dx\) [116]

3.2.16.1 Optimal result
3.2.16.2 Mathematica [C] (warning: unable to verify)
3.2.16.3 Rubi [A] (verified)
3.2.16.4 Maple [C] (warning: unable to verify)
3.2.16.5 Fricas [F]
3.2.16.6 Sympy [F]
3.2.16.7 Maxima [F]
3.2.16.8 Giac [F]
3.2.16.9 Mupad [F(-1)]

3.2.16.1 Optimal result

Integrand size = 21, antiderivative size = 580 \[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=-\frac {a+b \text {sech}^{-1}(c x)}{2 e \left (e+\frac {d}{x^2}\right )}-\frac {\left (a+b \text {sech}^{-1}(c x)\right )^2}{b e^2}+\frac {b \sqrt {-1+\frac {1}{c^2 x^2}} \text {arctanh}\left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {-1+\frac {1}{c^2 x^2}} x}\right )}{2 e^{3/2} \sqrt {c^2 d+e} \sqrt {-1+\frac {1}{c x}} \sqrt {1+\frac {1}{c x}}}-\frac {\left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+e^{-2 \text {sech}^{-1}(c x)}\right )}{e^2}+\frac {\left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {b \operatorname {PolyLog}\left (2,-e^{-2 \text {sech}^{-1}(c x)}\right )}{2 e^2}+\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^2} \]

output
1/2*(-a-b*arcsech(c*x))/e/(e+d/x^2)-(a+b*arcsech(c*x))^2/b/e^2-(a+b*arcsec 
h(c*x))*ln(1+1/(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))^2)/e^2+1/2*(a+b*ar 
csech(c*x))*ln(1-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^ 
(1/2)-(c^2*d+e)^(1/2)))/e^2+1/2*(a+b*arcsech(c*x))*ln(1+c*(1/c/x+(-1+1/c/x 
)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^2+1/2*(a+ 
b*arcsech(c*x))*ln(1-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2) 
/(e^(1/2)+(c^2*d+e)^(1/2)))/e^2+1/2*(a+b*arcsech(c*x))*ln(1+c*(1/c/x+(-1+1 
/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e^2+1/2 
*b*polylog(2,-1/(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))^2)/e^2+1/2*b*poly 
log(2,-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2 
*d+e)^(1/2)))/e^2+1/2*b*polylog(2,c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2 
))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^2+1/2*b*polylog(2,-c*(1/c/x+(-1 
+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e^2+1 
/2*b*polylog(2,c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1 
/2)+(c^2*d+e)^(1/2)))/e^2+1/2*b*arctanh((c^2*d+e)^(1/2)/c/x/e^(1/2)/(-1+1/ 
c^2/x^2)^(1/2))*(-1+1/c^2/x^2)^(1/2)/e^(3/2)/(c^2*d+e)^(1/2)/(-1+1/c/x)^(1 
/2)/(1+1/c/x)^(1/2)
 
3.2.16.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 1.16 (sec) , antiderivative size = 1208, normalized size of antiderivative = 2.08 \[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx =\text {Too large to display} \]

input
Integrate[(x^3*(a + b*ArcSech[c*x]))/(d + e*x^2)^2,x]
 
output
((2*a*d)/(d + e*x^2) + (b*Sqrt[d]*ArcSech[c*x])/(Sqrt[d] - I*Sqrt[e]*x) + 
(b*Sqrt[d]*ArcSech[c*x])/(Sqrt[d] + I*Sqrt[e]*x) + (8*I)*b*ArcSin[Sqrt[1 - 
 (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTanh[(((-I)*c*Sqrt[d] + Sqrt[e])*Tan 
h[ArcSech[c*x]/2])/Sqrt[c^2*d + e]] + (8*I)*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/ 
(c*Sqrt[d])]/Sqrt[2]]*ArcTanh[((I*c*Sqrt[d] + Sqrt[e])*Tanh[ArcSech[c*x]/2 
])/Sqrt[c^2*d + e]] - 4*b*ArcSech[c*x]*Log[1 + E^(-2*ArcSech[c*x])] + 2*b* 
ArcSech[c*x]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[ 
c*x])] - (4*I)*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + 
 (I*(Sqrt[e] - Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + 2*b*ArcSech 
[c*x]*Log[1 + (I*(-Sqrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] 
 - (4*I)*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(- 
Sqrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + 2*b*ArcSech[c*x] 
*Log[1 - (I*(Sqrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + (4* 
I)*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(Sqrt[e] 
 + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + 2*b*ArcSech[c*x]*Log[1 
+ (I*(Sqrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + (4*I)*b*Ar 
cSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] + Sqrt 
[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + 2*b*Log[x] + 2*a*Log[d + e*x^2 
] - 2*b*Log[1 + Sqrt[(1 - c*x)/(1 + c*x)] + c*x*Sqrt[(1 - c*x)/(1 + c*x)]] 
 + (b*Sqrt[e]*Log[((2*I)*Sqrt[e]*(Sqrt[d]*Sqrt[(1 - c*x)/(1 + c*x)]*(1 ...
 
3.2.16.3 Rubi [A] (verified)

Time = 1.70 (sec) , antiderivative size = 648, normalized size of antiderivative = 1.12, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6857, 6374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 6857

\(\displaystyle -\int \frac {x \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{\left (\frac {d}{x^2}+e\right )^2}d\frac {1}{x}\)

\(\Big \downarrow \) 6374

\(\displaystyle -\int \left (\frac {x \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{e^2}-\frac {d \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{e^2 \left (\frac {d}{x^2}+e\right ) x}-\frac {d \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{e \left (\frac {d}{x^2}+e\right )^2 x}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}+1\right )}{2 e^2}+\frac {\left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e^2}+\frac {\left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}+1\right )}{2 e^2}-\frac {a+b \text {arccosh}\left (\frac {1}{c x}\right )}{2 e \left (\frac {d}{x^2}+e\right )}-\frac {\left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )^2}{b e^2}-\frac {\log \left (e^{-2 \text {arccosh}\left (\frac {1}{c x}\right )}+1\right ) \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{e^2}+\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e^2}+\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e^2}+\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e^2}+\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e^2}+\frac {b \operatorname {PolyLog}\left (2,-e^{-2 \text {arccosh}\left (\frac {1}{c x}\right )}\right )}{2 e^2}+\frac {b \sqrt {\frac {1}{c^2 x^2}-1} \text {arctanh}\left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} x \sqrt {\frac {1}{c^2 x^2}-1}}\right )}{2 e^{3/2} \sqrt {\frac {1}{c x}-1} \sqrt {\frac {1}{c x}+1} \sqrt {c^2 d+e}}\)

input
Int[(x^3*(a + b*ArcSech[c*x]))/(d + e*x^2)^2,x]
 
output
-1/2*(a + b*ArcCosh[1/(c*x)])/(e*(e + d/x^2)) - (a + b*ArcCosh[1/(c*x)])^2 
/(b*e^2) + (b*Sqrt[-1 + 1/(c^2*x^2)]*ArcTanh[Sqrt[c^2*d + e]/(c*Sqrt[e]*Sq 
rt[-1 + 1/(c^2*x^2)]*x)])/(2*e^(3/2)*Sqrt[c^2*d + e]*Sqrt[-1 + 1/(c*x)]*Sq 
rt[1 + 1/(c*x)]) - ((a + b*ArcCosh[1/(c*x)])*Log[1 + E^(-2*ArcCosh[1/(c*x) 
])])/e^2 + ((a + b*ArcCosh[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^ArcCosh[1/(c*x) 
])/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*e^2) + ((a + b*ArcCosh[1/(c*x)])*Log[1 
 + (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*e^2) + 
 ((a + b*ArcCosh[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e 
] + Sqrt[c^2*d + e])])/(2*e^2) + ((a + b*ArcCosh[1/(c*x)])*Log[1 + (c*Sqrt 
[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*e^2) + (b*PolyLo 
g[2, -E^(-2*ArcCosh[1/(c*x)])])/(2*e^2) + (b*PolyLog[2, -((c*Sqrt[-d]*E^Ar 
cCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c^2*d + e]))])/(2*e^2) + (b*PolyLog[2, (c* 
Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*e^2) + (b*Po 
lyLog[2, -((c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] + Sqrt[c^2*d + e]))])/ 
(2*e^2) + (b*PolyLog[2, (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] + Sqrt[c^ 
2*d + e])])/(2*e^2)
 

3.2.16.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6374
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e 
_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n, 
 (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d 
 + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 6857
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_ 
)^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcCosh[x/c])^n/x 
^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0 
] && IntegersQ[m, p]
 
3.2.16.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.71 (sec) , antiderivative size = 644, normalized size of antiderivative = 1.11

method result size
parts \(\frac {a \ln \left (e \,x^{2}+d \right )}{2 e^{2}}+\frac {a d}{2 e^{2} \left (e \,x^{2}+d \right )}-\frac {b \,c^{2} x^{2} \operatorname {arcsech}\left (c x \right )}{2 \left (e \,c^{2} x^{2}+c^{2} d \right ) e}-\frac {b \sqrt {e \left (c^{2} d +e \right )}\, \operatorname {arctanh}\left (\frac {2 c^{2} d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )^{2}+2 c^{2} d +4 e}{4 \sqrt {c^{2} d e +e^{2}}}\right )}{2 e^{2} \left (c^{2} d +e \right )}-\frac {b \,\operatorname {arcsech}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{e^{2}}-\frac {b \,\operatorname {arcsech}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{e^{2}}-\frac {b \operatorname {dilog}\left (1+i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{e^{2}}-\frac {b \operatorname {dilog}\left (1-i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{e^{2}}+\frac {b \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e^{2}}+\frac {b \,c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}+1\right ) \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e^{2}}\) \(644\)
derivativedivides \(\frac {\frac {a \,c^{6} d}{2 e^{2} \left (e \,c^{2} x^{2}+c^{2} d \right )}+\frac {a \,c^{4} \ln \left (e \,c^{2} x^{2}+c^{2} d \right )}{2 e^{2}}+b \,c^{4} \left (-\frac {c^{2} x^{2} \operatorname {arcsech}\left (c x \right )}{2 \left (e \,c^{2} x^{2}+c^{2} d \right ) e}-\frac {\sqrt {e \left (c^{2} d +e \right )}\, \operatorname {arctanh}\left (\frac {2 c^{2} d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )^{2}+2 c^{2} d +4 e}{4 \sqrt {c^{2} d e +e^{2}}}\right )}{2 e^{2} \left (c^{2} d +e \right )}+\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}}{4 e^{2}}-\frac {\operatorname {arcsech}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{e^{2}}-\frac {\operatorname {arcsech}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{e^{2}}-\frac {\operatorname {dilog}\left (1+i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{e^{2}}-\frac {\operatorname {dilog}\left (1-i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{e^{2}}+\frac {c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}+1\right ) \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e^{2}}\right )}{c^{4}}\) \(666\)
default \(\frac {\frac {a \,c^{6} d}{2 e^{2} \left (e \,c^{2} x^{2}+c^{2} d \right )}+\frac {a \,c^{4} \ln \left (e \,c^{2} x^{2}+c^{2} d \right )}{2 e^{2}}+b \,c^{4} \left (-\frac {c^{2} x^{2} \operatorname {arcsech}\left (c x \right )}{2 \left (e \,c^{2} x^{2}+c^{2} d \right ) e}-\frac {\sqrt {e \left (c^{2} d +e \right )}\, \operatorname {arctanh}\left (\frac {2 c^{2} d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )^{2}+2 c^{2} d +4 e}{4 \sqrt {c^{2} d e +e^{2}}}\right )}{2 e^{2} \left (c^{2} d +e \right )}+\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}}{4 e^{2}}-\frac {\operatorname {arcsech}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{e^{2}}-\frac {\operatorname {arcsech}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{e^{2}}-\frac {\operatorname {dilog}\left (1+i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{e^{2}}-\frac {\operatorname {dilog}\left (1-i \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )\right )}{e^{2}}+\frac {c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}+1\right ) \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e^{2}}\right )}{c^{4}}\) \(666\)

input
int(x^3*(a+b*arcsech(c*x))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)
 
output
1/2*a/e^2*ln(e*x^2+d)+1/2*a*d/e^2/(e*x^2+d)-1/2*b*c^2*x^2*arcsech(c*x)/(c^ 
2*e*x^2+c^2*d)/e-1/2*b*(e*(c^2*d+e))^(1/2)/e^2/(c^2*d+e)*arctanh(1/4*(2*c^ 
2*d*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))^2+2*c^2*d+4*e)/(c^2*d*e+e^2)^ 
(1/2))-b/e^2*arcsech(c*x)*ln(1+I*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))) 
-b/e^2*arcsech(c*x)*ln(1-I*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2)))-b/e^2 
*dilog(1+I*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2)))-b/e^2*dilog(1-I*(1/c/ 
x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2)))+1/4*b/e^2*sum((_R1^2*c^2*d+c^2*d+4*e) 
/(_R1^2*c^2*d+c^2*d+2*e)*(arcsech(c*x)*ln((_R1-1/c/x-(-1+1/c/x)^(1/2)*(1+1 
/c/x)^(1/2))/_R1)+dilog((_R1-1/c/x-(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/_R1)) 
,_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d))+1/4*b*c^2/e^2*d*sum((_R1 
^2+1)/(_R1^2*c^2*d+c^2*d+2*e)*(arcsech(c*x)*ln((_R1-1/c/x-(-1+1/c/x)^(1/2) 
*(1+1/c/x)^(1/2))/_R1)+dilog((_R1-1/c/x-(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/ 
_R1)),_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d))
 
3.2.16.5 Fricas [F]

\[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arsech}\left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^3*(a+b*arcsech(c*x))/(e*x^2+d)^2,x, algorithm="fricas")
 
output
integral((b*x^3*arcsech(c*x) + a*x^3)/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 
3.2.16.6 Sympy [F]

\[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^{3} \left (a + b \operatorname {asech}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{2}}\, dx \]

input
integrate(x**3*(a+b*asech(c*x))/(e*x**2+d)**2,x)
 
output
Integral(x**3*(a + b*asech(c*x))/(d + e*x**2)**2, x)
 
3.2.16.7 Maxima [F]

\[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arsech}\left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^3*(a+b*arcsech(c*x))/(e*x^2+d)^2,x, algorithm="maxima")
 
output
1/2*a*(d/(e^3*x^2 + d*e^2) + log(e*x^2 + d)/e^2) + b*integrate(x^3*log(sqr 
t(1/(c*x) + 1)*sqrt(1/(c*x) - 1) + 1/(c*x))/(e^2*x^4 + 2*d*e*x^2 + d^2), x 
)
 
3.2.16.8 Giac [F]

\[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arsech}\left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^3*(a+b*arcsech(c*x))/(e*x^2+d)^2,x, algorithm="giac")
 
output
integrate((b*arcsech(c*x) + a)*x^3/(e*x^2 + d)^2, x)
 
3.2.16.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^3\,\left (a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^2} \,d x \]

input
int((x^3*(a + b*acosh(1/(c*x))))/(d + e*x^2)^2,x)
 
output
int((x^3*(a + b*acosh(1/(c*x))))/(d + e*x^2)^2, x)